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Memory Insensitive Simplification for View-Dependent Refinement

Peter Lindstrom

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Abstract

We present an algorithm for end-to-end out-of-core simplification
and view-dependent visualization of large surfaces. The method
consists of three phases: (1) memory insensitive simplification; (2)
memory insensitive construction of a level-of-detail hierarchy; and
(3) run-time, output sensitive, view-dependent rendering and nav-
igation of the mesh. The first two off-line phases are performed
entirely on disk, and use only a small, constant amount of mem-
ory, whereas the run-time component relies on memory mapping
to page in only the rendered parts of the mesh in a cache coherent
manner. As a result, we are able to process and visualize arbitrarily
large meshes given a sufficient amount of disk space—a constant
multiple of the size of the input mesh.

Similar to recent work on out-of-core simplification, our memory
insensitive method uses vertex clustering on a uniform octree grid
to coarsen a mesh and create a hierarchy, and a quadric error met-
ric to choose vertex positions at all levels of resolution. We show
how the quadric information can be used to concisely represent ver-
tex position, surface normal, error, and curvature information for
anisotropic view-dependent coarsening and silhouette preservation.

The focus of this paper is on the out-of-core construction of a
level-of-detail hierarchy—our framework is general enough to in-
corporate many different aspects of view-dependent rendering. We
therefore emphasize the off-line phases of our method, and report
on their theoretical and experimental memory and disk usage and
execution time. Our results indicate on average one to two orders of
magnitude improvement in processing speed over previous out-of-
core methods. Meanwhile, all phases of the method are both disk
and memory efficient, and are fairly stralghtforward to implement.

1 INTRODUCTION

Recent advances in scanning technology and the ever increasing
size of computer simulations have lead to a rapid increase in the
availability and size of geometric data sets. Massive polygonal data
sets, consisting of hundreds of millions of faces, are becoming quite
common [1, 13]. While the performance of graphics hardware has
also seen a dramatic rise in the last few years, our ability to produce
data sets that overload the capabilities of state-of-the-art graphics
chips has lead researchers to develop methods for automatic model
simplification and run-time level-of-detail (LOD) management [7].
Whereas many polygonal environments consist of a large collec-
tion of moderately complex objects, such as those used in video
games, recent trends are for single objects to consist of millions of
polygons. Examples of such models include terrain surfaces and
high-resolution range scans. The traditional approach of storing a
few static levels of detail is not viable for such large objects, which
are often viewed in a manner that they vary greatly in screen res-
olution over the surface. As a result, methods for view-dependent
simplification have been proposed, in which a continuous level-of-
detail hierarchy is first constructed, and is then adapted at a fine
granularity at run-time [3,5,6,11, 16, 19, 26].
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The techniques mentioned above have been used successfully
for simplifying models up to a few million triangles. In the last few
years, however, polygonal models have become so large that they
often greatly exceed our ability to perform conventional in-core
simplification, and a number of techniques have been devised for
simplifying such large models out-of-core, e.g. [1,15,18,24]. These
methods, however, all produce static, single-resolution meshes,
which in a sense is inappropriate for such large surfaces, because in
order to view them interactively they have to be simplified to such
a degree that many important details are lost. Rather, we would like
to construct a level-of-detail hierarchy for such large surfaces, and
then use view-dependent techniques to render and explore them at
varying resolution without significant loss in fidelity. While there
have been some recent publications on out-of-core construction of
LOD hierarchies, most niotably the work by El-Sana and Chiang [4]
and by Prince [21], these methods have rather long execution times,
can be somewhat difficult to implement, and still rely on having a
large amount of memory available for in-core processing. Further-
more, the results presented in these papers are for models of rather
modest size—just a million or a few million triangles, making it
difficult to judge how well they scale to truly large models.

In this paper, we present an alternative approach to out-of-core
simplification for view-dependent refinement, by extending the
static simplification algorithm by Lindstrom and Silva [18]. Our
end-to-end off-line method is memory insensitive, meaning that it
can run successfully with essentially an arbitrarily small amount of -
memory (in our case, less than 8 MB). We achieve this by stor-
ing all intermediate computations in temporary files on disk, and
take advantage of fast sequential disk access. In addition to being
memory efficient, our method is considerably faster than previously
published techniques, running at a triangle reduction rate of up to
50,000 triangles per second. We also present data structures for
concisely encoding quadric matrices and the per-vertex informa-
tion needed later at run-time during view-dependent rendering. Fi-
nally, our method is straightforward to implement, and is a simple

" but significant extension of Lindstrom and Silva’s memory insensi-

tive simplification algorithm. We will present the various steps in
our algorithm after covering related work in the area.

2 PREVIOUS WORK

In this section, we cover previous work on view-dependent and out-
of-core simplification. Because there has been extensive work on
simplification, we here only cover a few of the more notable algo-
rithms in the field.

Among the first methods for view-dependent simplification for
general polygonal models was the technique by Xia and Varsh-
ney [26). Their method uses edge collapse to construct a binary
tree of possible coarsening operations off-line. At run-time, they
use a screen space metric, based on geometric error and proximity
to silhouettes and specular highlights, for determining which edges
to collapse. Hoppe extended his work on progressive meshes to
view-dependent refinement [11]. Similar to [26], Hoppe uses edge
collapse, but his algorithm provides greater freedom in choosing
the order of edge collapses, which generally results in higher qual-
ity adaptive meshes. His method also makes use of geomorphing to



reduce temporal LOD artifacts. More recently, El-Sana and Varsh-

ney [5] presented a method, based on the more general vertex merge
operation, that is able to merge and simplify topologically disjoint
parts of an object.

A different approach to view-dependent refinement was taken by
Luebke and Erikson [19]. Rather than relying on edge collapse or
vertex pair contraction, they use an even more general coarsening
operation—vertex clustering—which allows a large collection of
vertices to be merged in a single atomic operation. Like us, they
make use of an octree decomposition of space, rather than a general
binary tree over the set of mesh vertices. Like others, they make
use of normal cones to detect when the surface is near a silhouette.
Luebke and Hallen [20] later used this framework for performing
view-dependent “imperceptible simplification.”

The off-line processing techniques above all assume that the hi-
erarchy can be constructed in-core. To simplify large meshes out-
of-core, Lindstrom [15] proposed a technique, based on vertex clus-
tering on a uniform grid, that makes use of Garland and Heckbert’s
quadric error metric [9]. Lindstrom’s method performs a single
sweep over the mesh, and constructs an in-core representation of

the simplified model. More recently Lindstrom and Silva [18] ex-’

tended this method by removing the requirement of having enough
RAM to store the simplified model. Their memory insensitive tech-
nique uses a constant amount of memory, and makes use of a series
of external sorts to allow sequential access to the on-disk data. Our
first simplification phase is based upon their algorithm. To pro-
vide a higher level of adaptivity, Shaffer and Garland [24] proposed
making two instead of one passes over the mesh. In the first pass,
uniform clustering like in [15] is performed, after which a binary
space partitioning (BSP) tree is constructed from the accumulated
quadric information. In the second pass, the BSP tree is used to
recluster the mesh. :
There have only been a few published methods for out-of-core
simplification for view-dependent refinement. Hoppe applied his
view-dependent progressive mesh work to terrain data [12]. His
approach is to partition the terrain into a block hierarchy and sim-
plify the blocks independently. Then, the blocks are merged and
the seams between them are simplified further. Prince [21] later
extended Hoppe’s out-of-core simplification method for terrain to
arbitrary polygonal surfaces. Like our method, Prince’s makes use
of quadric error metrics, but uses edge collapse as the coarsening

primitive. While effective for medium-size models, his out-of-core

method still requires much RAM and may be too slow for sim-
plifying very large models. El-Sana and Chiang [4] proposed a
novel out-of-core technique for view-dependent simplification by
segmenting the mesh into independent patches. These patches are
such that the edge collapse order inherently preserves the bound-
aries between them, thus simplifying and stitching the patches to-
gether can be done without the need for explicit boundary con-
straints. Unfortunately, the models used in their paper are small
by out-of-core simplification standards, and it is not clear how well
their method scales.

Rusinkiewicz and Levoy [23] proposed an interesting alterna-
tive to polygon-based view-dependent refinement. Their QSplat
algorithm clusters the triangle mesh into a vertex hierarchy, and
then uses point primitives to render the mesh. While conceptually
simple, most current hardware is optimized for triangle rather than
point rendering, and the quality afforded by real-time point-based
rendering can be rather low. Still, hybrid techniques like Cohen et
al.’s point- and triangle-based simplification [2] may prove useful.

3 ALGORITHM OVERVIEW

Our view-dependent algorithm consists of three phases: simplifi-
cation, level-of-detail hierarchy construction, and run-time view-
dependent refinement and rendering. The first two phases are run

¢

off-line, and are used to produce an on-disk level-of-detail repre-
sentation of the mesh. The run-time component then traverses this
hierarchy, pages in the data needed, and produces an adaptive mesh
that can be displayed interactively. Our main approach is to use
a sparse octree decomposition of space over a uniform rectilinear
grid, similar to Luebke and Erikson’s view-dependent simplifica-
tion algorithm [19]. The octree is sparse in the sense that only
those nodes that contain at least one vertex from the input mesh are
retained. Each node in this octree corresponds to a vertex at some
level of resolution, and adaptive mesh simplification and refinement
are performed by collapsing and expanding nodes (i.e. removing
and creating child nodes, respectively) in the octree. In this section,
we give a brief overview of the three phases of our algorithm, and
provide further details in the following sections.

The first phase—simplification—is based on the OoCSx mem-
ory insensitive mesh simplification algorithm by Lindstrom and
Silva [18]. Their method is a memory efficient variation on the
out-of-core simplification algorithm by Lindstrom [15], which in
turn was inspired by Rossignac and Borrel’s [22] vertex clustering
algorithm. Using a uniform grid to partition space, all vertices that
fall in the same grid cell are merged (clustered) to a single vertex.
In this process, the triangles that collapse to an edge or a point are
discarded. Representative vertices for the clusters are chosen based
on minimizing the quadric error—a weighted sum of squared dis-
tances to the triangle planes of the input mesh—which can be en-
coded using a symmetric 4 x 4 matrix [9].

The QoCSx algorithm performs all these tasks on disk, and
avoids costly random accesses using a sequence of external sorts,
followed by fast sequential accesses. The intermediate output of
this algorithm is a set of triangles for the simplified mesh, and a list
of quadric matrices for its vertices. We associate with each quadric
matrix an octcode—a bit string that uniquely identifies a grid cell
by position and resolution in the octree. Furthermore, the quadric
file is output in octcode order, such that sibling nodes are stored
together. The triangle and quadric files constitute a complete repre-
sentation of the simplified mesh, and this is the only data output by
our simplification phase. This phase of the algorithm is described
in Section 4. '

The LOD construction phase begins by processing the quadric
matrix file sequentially, grouping sibling nodes together, and pro-
ducing a new quadric matrix for the parent node as the sum of the
children’s quadric matrices. The parent nodes are then output se-
quentially (again in octcode order) to a temporary file for that given
level of resolution. This process is then applied iteratively until all
levels in the octree are represented, ending with a temporary file
containing a single node—the root node. This bottom-up construc-
tion is then followed by a top-down, level-by-level traversal of the
quadric files, during which optimal vertex positions and quadric er-
rors are computed and written to the final output file. The triangle
file, which is treated as a first-in-first-out queue, is simultaneously
traversed sequentially, and the triangles are distributed among the
current node and its children. A triangle is assigned to a node if it
degenerates when the node is collapsed (cf. {19]). Eventually all
the nodes of the octree have been output, and all the triangles have
been assigned to the internal nodes of the octree. The algorithm
for the LOD construction phase is described in Section S, while the
data structures for the output produced are discussed in detail in
Section 6.

In the run-time phase, the file containing the LOD hierarchy,
which could potentially greatly exceed the available main mem-
ory, is memory mapped so that it can be accessed as though it were
resident in contiguous memory. For simplicity, we let the oper-
ating system perform on-demand paging of the external data. At
the beginning of each frame, we perform view-dependent refine-
ment by accessing a dynamically allocated in-core “copy” of the
currently active nodes in the static LOD hierarchy. This refinement



simplify(T'a)
1 for each triangle t = {p%, p5,pi) € Tin
2 compute plane equation n, for ¢
3 for each vertex p! of t
4 map p! to leaf octcode v}
5 append (v}, fi;) to plane equation file P
6 if vi, v, v% are distinct then
7 append (v}, v}, v}) to triangle file Tou:
8 externally sort P on octcode v
9 for each octcode v € P
10 for each plane equation #; for v
11 add fi.fi, to quadric matrix Q, for v
12 append (v, Q,) to quadric file @
Table 1: Pseudo-code for memory insensitive simplification. The output is a triangle
file T,y and a quadric file Q,, for level 2 (the bottom level) in the LOD hierarchy.

is performed recursively in a top-down, depth-first traversal. If the
projected quadric error for a node exceeds a user-specified thresh-
old, then we expand the node. Conversely, if the error is smaller
than the threshold, then we collapse the node. As new nodes are
created, we extract data from the external LOD hierarchy, compute
any per-vertex and per-triangle information not explicitly stored,
and write this data to a dynamically allocated data structure. Fi-
nally, the nodes in this adaptive octree are visited (in no particular
order), and all triangles encountered are rendered. The in-core, dy-
namic data structures are presented in Section 7, while the steps of
the view-dependent refinement are given in Section 8.

4 SIMPLIFICATION

The simplification phase of our algorithm is based on, and is essen-
tially identical to, the beginning stages of the memory insensitive
technique OoCSx described in [18]. Therefore, we will only briefly
cover this part of our algorithm, and we will focus on the few differ-
ences between the two methods. Pseudo-code for the simplification
phase is given in Table 1. '

Before the simplification begins, the user chooses the resolu-
tion of a uniform rectilinear grid that completely contains the input
mesh. This grid is constrained to have dimensions 2™ x 2™ x 27,
for some positive integer n. The cells in this grid correspond to the
leaf nodes in an (n + 1)-level octree, that ultimately forms a mul-
tiresolution representation of the mesh. In the discussion below, we
will use the terms grid cell, cluster, and node interchangedly.

As in [18], we process the input mesh, which is represented as a
triangle soup (i.e. a sequence of triplets of vertex coordinates), one
triangle at a time. For each triangle ¢, we compute a 4-vector

fie = Ae (f}:) ' S

for an implicit plane equation f x + d: = 0. Note that fi; is
weighted by the area A; of t. Then, for each of ¢’s three vertices,
we quantize the vertex coordinates to an integer grid cell location,
and then convert this location to an octcode v. These octcodes are
Bresented as follows: The root node has octcode v = 1, and the
child of a node v is.computed as 8v + k. These octcodes have
the property that they are ordered by level, from top to bottom, and
sibling nodes have consecutive octcodes. Whereas these octcodes
are different from the cluster IDs used in OoCSx, this is of no con-
sequence to the simplification algorithm—any one-to-one mapping
" between quantized coordinates and cluster IDs will do. The plane
equations and associated octcodes are then output sequentially to a
temporary plane equation file, P, and non-degenerate triangles are
written to a triangle file Tou;.
After the input has been exhausted, the plane equauon file is
sorted on the octcode field using an external sort. As in [18], we

octree-construct(Qn, F)
1 for eachlevell =n, ..., 1

2 for each set of siblings C in Q, with parent octcode p
3 compute parent quadric Q, = 3° .- Q.
4 append (p, Q,) to parent quadnc file Qi1
5 foreachlevell =0,...,n .
6  for each node (p, Qp) eQ
7 add link to p from its parent in H
8 compute vertex data from Q, and append to H
9 if head(F') = p then'
10 - dequeue triangles T, from F.
11 for each triangle t = (v%,v5,v) € T,
12 “if {path(v},! + 1)} are distinct then.
13 . append t to current node p in H
14 else
15 identify common child ¢ from {v{}
16 append ¢ to temporary file T
17 " for each child cof p
18 ‘ if T is non-empty then
19 enqueue {c, T;) onto F’

Table 2: Pseudo-code for memory insensitive LOD hierarchy construction. This pro-
cedure takes as input a quadric file Q,, and a queue F of triangles to process for the
root node, and outputs an LOD hierarchy H.

use rsort [14] for this task. We then process all plane equations,
one cluster at a time, and construct a 4 X 4 quadnc matrix Q. for

each cluster v:
Qv = Z ntnt (2
t

Finally, we output the quadric matrices along with their octcodes to
a quadric file @, for level n in the octree (the bottommost level),
and we remove the temporary plane equation file P. For each leaf
node that contains at least one vertex from the original mesh, we
have a quadric matrix that corresponds to exactly one vertex in
the simplified mesh. The original OoCSx simplification algorithm
would at this point compute representative vertices for each clus-
ter. For storage efficiency reasons, we will defer this computation

~ until later. OoCSx would then proceed by performing multiple ex- -

ternal sorts on the triangle file to replace the cluster IDs with vertex
indices. Because we will make direct use of the cluster IDs (or’
octcodes), this step fortunately does not have to be done in our al-
gorithm. Instead, we perform only a single external sort—on the
plane equation file.

There is one important detail that we have left out so far, and
which we will revisit later. During the LOD hierarchy construction,
we will need an approximate surface normal for each node. When
adding up the plane equations during simplification, we can easily
construct such normals for each node in Q. In ourimplementation,
we store these normals together with the quadric matrices in Qn,
and later propagate them up the octree. If space is at a premium,
then an alternative approach would be to extract the normals from
the quadric matrices. We will show in Section 6.1.2 how to do this.

The steps described above are all the components of our sim-
plification algorithm. The output is a single-resolution, static mesh,
represented as {Qr, Tout). We now proceed by constructing a level-
of-detail hierarchy for this simplified mesh. ‘

5 LOD HIERARCHY CONSTRUCTION

The second phase of our algorithm takes the simplified mesh, rep-
resented as a list of per-vertex quadric matrices Q» and a list of
triangles Ty, and constructs a coarse-to-fine level-of-detail rep-
resentation H of the mesh. For each node in H, we store vertex
information, such as position, normal, error, etc., as well as a (po-
tentially empty) list of triangles. These triangles are the ones that
are eliminated when the node is collapsed. We will focus later on



the particular data structures used for the nodes in H, and spend this
section describing the steps of the LOD construction algorithm,
Table 2 lists pseudo-code for the octree construction. We be-
gin by computing quadric matrices for the interior nodes of the oc-
tree (lines.1-4). Recall that the simplification has already produced
quadric matrices Q. for the leaf nodes on level n. Because Qn
is sorted on octcode, and because sibling nodes have consecutive
octcodes, we can easily scan @), and fetch the quadric matrices for

each group of siblings. From these we compute a quadric matrix

for the parent using simple matrix addition. The resulting matrix
is then output to another temporary file for the next coarser level.
This procedure is iterated until quadric matrices for all levels of the
octree have been constructed. '

The next and final step is to compute vertex data, assign triangles
to each node, and create links from each parent to its children. As
is common in multiresolution methods, we store the multiresolution
structure from coarse to fine resolution. While this layout is of no
particular advantage to our view-dependent algorithm, other than
the fact that the breadth-first layout and closeness of siblings in the
file result in good cache coherence, we anticipate that a coarse-to-
~ fine order would be beneficial for progressive transmission. In addi-
tion, constructing H in this order allows the triangles to be quickly
distributed to their respective nodes.

We proceed by initializing a first-in-first-out (FIFO) queue F
with the tuple {r, Tou: ), where 7 = 1 is the root octcode and Tou: is
the entire set of triangles in the simplified mesh. Then, for each
level ! starting at the root, we read nodes sequentially from the
quadric file Q; on level I. When processing a new node p, we
first identify its parent (line 7). Due to our octcode construction,
either p has the same parent g as the previously processed node, or
p’s parent is the node immediately following ¢. By maintaining the
octcode g for the current parent, we test if g is p’s parent. If not,
we recompute ¢ from p and move on to the next node in H (which
is guaranteed to be ¢g). We then add a link (file offset) from q to its
child p. Note that adding child links requires both read and write
random access to H, but these accesses are coherent and do not
incur excessive overhead.

From the quadric matrix Q, for the current node p, we compute
the per-vertex data (see Section 6) needed at run-time, and append
this data to the output file H. If the node at the head of the queue F'
equals the current node p, then there are triangles T, to be processed
for p. (Note that this condition always fails for leaf nodes, which
do not contain triangles.) For each triangle {, we examine its three
octcodes {v}, v5, v}) to determine if it belongs to the current node
or to one of its children. Note that each group of three bits in an

octcode determine which of eight branches to take from the node .

arrived to so far from the root. Thus, by examining the paths taken
from the root to one level below p (i.e. up to level [+ 1; see line 12),
and testing if these paths are all different for {v}}, we can determine
if expanding p would cause the previously degenerate triangle to
become non-degenerate. If this is the case, then we add ¢ to the
current node p being output. Otherwise, it must be the case that at
least two of the paths coincide. Furthermore, these coincident paths
must lead to one of the children ¢ of p, and we append the triangle
to a temporary triangle file T, for that child.

After all the triangles T}, have been processed, we enqueue (ap-
pend) all the non- empq/ temporary triangle files 7 (in octcode or-
der) onto the FIFO F,' and we are then done processing node p.
After the temporary file @, has been exhausted, we can remove it
and move on to the next level. Finally, after all nodes have been
output to H, we remove F and phase 2 of our algorithm is com-
plete. 2

'This enqueuing operation could be implemented by simply adding a
pointer to each temporary file Tc. However, this would eventually lead
to a very large number of files (possibly millions), and could result in a
significant space and time overhead when locating and opening the files.

external octree node
vertex data .
rotation for orthogonal matrix P

3-vector r

3-vector A eigenvalues of A

3-vector P vertex position

scalar € quadric error
triangle data

count - nr  number of triangles

octcode*3 T list of triangles
octree data

offset*8 "¢ file offsets to children

Table 3: External data structures for internal (i.e. non-leaf) octree node. Leaf nodes
contain only the vertex data fields.

Note that the size of F is linear in the number of triangles Ty
and the number of nodes. Because the number of triangles in F'
is limited by Tout, and since we already know the total number of
nodes, it is possible to use a fixed amount of disk space for F' by
using circular storage. However, for simplicity and because F’ is
generally small compared to the overall disk usage we did not use
such a circular queue in our implementation.

6 EXTERNAL DATA STRUCTURES

We now turn our attention to the data structures used for our exter-
nal on-disk representation of the level-of-detail hierarchy H. Each
node in the hierarchy consists of vertex information (position, error,
etc.) and, if the node is not a leaf, a list of triangles and pointers to
its children. These data structures are given by Table 3. The tri-
angles are represented as triplets of octcodes corresponding to leaf
nodes in the hierarchy. The computation of the vertex data from the
quadric matrices is more involved, and we will describe the vertex
fields stored in the followmg sections.

6.1 Vertex Data

In this section, we describe how to compute and store all the per-
vertex information needed in our view-dependent renderer from the
4 x 4 quadric matrix Q. The data we are concerned with are the ver-
tex position p, the surface normal 1, the quadric error € at p, and
a matrix K that encodes the normal curvature and is used to mea-
sure how large the error appears from different view directions. We
could compute and store (K, fi, p, €) directly, however this infor-
mation would require 6 +3+3+1 = 13 scalar values, whereas the
original quadric matrix requires only 10 values (assuming we take
advantage of the fact that Q and K are symmetric). Instead, we
will make use of an alternative representation (r, A, p, €}—three 3-
vectors and a scalar—that allows K and fi to be computed quickly.

6.1.1 Vertex Position and Quadric Error

In Section 4, we explained how to compute the quadric matrix Q
for a vertex or, more generally, a node in the LOD hierarchy. As
in [15], we decompose the quadric matrix as

A -b) '
We can then write the quadric error Q? as

Q(x)=x"Ax—-2b'x+c¢
= (x—p) A(x-p)
—2b"(I—- AtA)X +(c—b'A*D)
where A% is the pseudo-inverse [10] of A, and p is a point at

which the quadric error is minimized. If A is singular, then Q
has infinitely many minima. If however A is non-singular, which

-



happens in the vast majority of cases, then A* = A~', and the
quadric error reduces to

Q(x) = (x—p) A(x—p) +(c—b'A™'D)

4

=(x—p) A(x-p)+e¢ @

where € = Q(p) is the minimum quadric error. That is, we can pa-

rameterize the quadric error as (A, p,€). Note that p is generally

“our chosen vertex position. The only exception is when p falls out-

side its associated grid cell, in which case we constrain the position
using the procedure outlined in [18]. '

Regardless of the rare special cases mentioned above, if we do
not have to compute @ at positions other than the vertex posi-
tion p (irrespective of our choice of p), then the parameterization
(A, p,€) is useful, since it directly gives us the error € and vertex
position p. Still, we are left with determining the normal fi and the
curvature matrix K. As shown below, these two quantities can both
be derived from the matrix A.

6.1.2 Surface Normal Encoding

To compute the surface normal fi, note that the matrix A is the
covariance matrix (with zero mean) for the set of (weighted) nor-
mals of the triangles in the cluster [8]. Thus, the eigenvector for the
largest eigenvalue A; of A corresponds to the dominant normal di-
rection fi. Note that if fi is an eigenvector, then so is —1fi. Because
the sign of the normal matters for correct rendering, we will show
later how to resolve this ambiguity. Using an eigen decomposition
of A, we have

A = PAP' _ 5)
P=(A % Z%3) (6)
A = diag(A1,A2,A3) A1 =>"A2 > Aa >0 0]

where A is a diagonal matrix of (non-negative) eigenvalues, and P
is orthogonal with determinant det(P) = 1. That is, P is a rotation
matrix, which can be represented using as little as three parameters.
We have chosen to use a 3-parameter axis-angle representation that
is similar to the standard unit quaternion representation. Let P cor-
respond to a rotation around a unit vector I by an angle 8. Then the

vector
r=(re ry 1) = ﬂsin% g 3)

| completely represents P. We will not gd into the details of how to
compute r from P, but refer the reader to any tutorial on quater-
nions, e.g. [25]. We recover P from r as follows:

2

1—ry - r2 rery —ar, TLT.+ary
P=|ryra+or. 1-— r2—r2 Ty, 5 047‘12 ®
PaTg —oOry Tery+ary 1—rz—1y

a=V2—'ri—rZ—rf . (10)

Thus, by storing r, we can quickly compute P and the normal fi
from the first column of P. To recover A, we also store the eigen-
values A.

As noted above, the canonical decomposition A = PAPT does
not necessarily lead to a matrix P whose first column equals the
surface normal in sign. For example, A = (—P)A(—P)T is an
equally valid decomposition. However, because this computation
is deterministic, we will always obtain the same matrix P from
any given A. Thus, if we already know the (approximate) normal,
which is the case in our simplification algorithm (see Section 4),
then we can test whether the normal obtained from P matches the
given normal. If the two vectors point in opposite directions, then
we encode this fact by negating A;. Because A is non-zero and
positive semi-definite, we must have A, > 0, and we can therefore
safely use the sign bit of A; to encode the sign of i.

() gonal i ]

v lique vew.
Figure 1: llustration of silhouette preservation. The nearly flat faces of the cube can
be simplified greatly when they are orthogonal to the view direction.

As mentioned in Section 4, we explicitly store approximate nor-
mals in the quadric files. To save disk space, however, we could use
the technique just described for extracting normals from quadric
matrices. We would then compute—but not store—a surface nor-
mal for each leaf node during simplification, compare it against the
normal obtained from the quadric matrix Q, and encode its sign
difference in Q. Similar to the argument above, because Q is non-
zero and positive semi-definite, tr(Q) > 0, and the need to flip the
extracted normal can be encoded by negating the diagonal of Q.

6.1.3 ‘ Curvature Matrix

Our view-dependent error metric takes advantage of the fact that
geometric displacements parallel to the view direction are less per-
ceptible than those orthogonal to the view direction. Thus geometry
viewed straight-on can often be coarsened significantly more than
geometry near silhouettes—a fact that has been exploited by other
view-dependent methods, e.g. [11, 16,19,26]. This is illustrated
in Figure 1 for a smoothed and slightly curved cube. Rather than
using a cone to bound the normals [11, 19], we account for this di-
rectionality by analyzing the normal spread given by the quadric
matrix. .

Let fi; be the unit normal, and consequently the-direction of ge-
ometric error, associated with triangle ¢. Furthermore, let ¥ be the
unit vector from the cluster’s representative vertex that we are com-
puting the error for to the viewpoint. In our anisotropic error projec-

tion, we modulate the error associated with ¢ by the sine of the angle

-, between fi; and ¥, i.e. by the factor n; = |sin~y,| = |jfi, x ¥||.
Thus, when ~; is zero, the projected error vanishes, while v, = 90°
implies that we are near a silhouette, and the projected error is at a
maximum. We can rewrite (the square of) 7; as follows:

nF = [[Aex V|2 = ¥R R — (VTRe)? = VT (I-AA))0 (A1) -

This modulation factor for a single triangle ¢ can then be extended
to a set of triangles 7" in a cluster as a weighted sum:
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As in Section 4, A is the area of t.. The expression for the trace
of A, tr(A) = 3, A?, follows from the fact that tr(-) is linear

and tr(f;A]) = A o = 1.



in-core octree node

vertex data I
3x3-matrix K  curvature matrix
3-vector n vertex normal
3-vector P vertex position
scalar € quadric error
triangle data
count nr  number of triangles
vertex*3 T list of triangles
count ngr  number of references
pointer R list of references to this node
octree data
boolean leaf is node a leaf in the dynamlc octree? |
index l octree level
pointer s pointer to static external node

pointer*8 ¢ pointers to children

Table-4: In-core data structures for octree node.

We call K the “curvature matrix,” because it encodes the amount
that the surface curves in different directions. From the definition
"of K, we see that as the normals spread out the curvature grows, the
eigenvalues approach a common value, K approaches 3 2, and as a
result i becomes more and more isotropic. If on the other hand
A1 is much larger than the other eigenvalues, then the normals are
tightly clustered, the curvature is small, and nr allows aggressive
coarsening when V is near the dominant normal direction.

7 IN-CORE DATA STRUCTURES

In this section we describe the in-core data structures used in our
run-time view-dependent renderer. These data structures closely
resemble the ones used by Luebke and Erikson [19], but have been
modified to work in an out-of-core setting, where only part of the
octree is assumed to be memory resident. That is, we maintain an
in-core subset H' of the LOD hierarchy H, such that the leaf nodes
of H' correspond to the vertices of the adaptively refined mesh. We
refer to the subset H' of H as the set of active nodes. The triangles
of the refined mesh are those stored in the internal (non-leaf) nodes
of H’. Each triangle vertex, represented on disk as an octcode v
for a leaf node in H, is mapped to a proxy vertex—either v itself
or its lowest active ancestor. Thus, the actual vertices used for a
triangle change dynamically as the mesh is adaptively refined and
simplified.

Table 4 lists the octree node data structures that are dynamically
allocated at run-time. Note that these data structures are the mini-
mum information needed to drive our view-dependent refinement,
and they may need to be augmented for additional capabilities such
as view frustum, occlusion, and back-face culling, more compli-
cated view-dependent error metrics, texturing, etc. We have already
covered the fields for the vertex data in Section 6, and will here dis-
cuss the remaining fields for the node. The triangle data consists of
a list of triangles and a list of pointers to triangle vertices that cur-
rently reference this node as their proxy. Thus the vertex data type
consists of an octcode for a leaf node and an octree node pointer to
the vertex’s proxy. Whenever a node is expanded, we need to mod-
ify all the triangle vertices that have the node as a proxy, which is
accomplished by maintaining a list of back references to those ver-
tices. Similarly, when a node is collapsed, its children’s references
are first accessed, and the associated proxies are modified to point
to the collapsed node.

In contrast to [19], where the entire hierarchy is assumed to be
memory resident, we cannot pre-compute the list of back references
(or “tris” using their terminology), because these references might
point to triangles in nodes that are not active and therefore have not
been paged in. Rather, as triangles are added and removed, we add
and remove references on-the-fly .as necessary. Similarly, we do
not construct the triangle list T for a node until it is expanded. We

node-expand(p)
1 leaf (p) — false
2 for each child c of p
3 initialize ¢ by computing its vertex data
" 4 for each triangle ¢ assigned to p
5  for each vertex v{ of ¢
6 identify proxy node ¢} from octcode v}
7 add reference r from proxy node gf to ¢
8 for each reference r in p
9  identify child c corresponding to
10  tansfer reference r fromptoc
node-collapse(p)
1 for each child cof p
node-collapse(c)
transfer reference r fromcto p
set r’s proxy to point to p
remove ¢
for each triangle ¢ as51gned top
for each vertex vf of t
remove reference to ¢ from proxy g? for vl
leaf (p) «— true

D00~ QNP W

Table 5: Pseudo-code for node expansion and collapse.

will further discuss the operations on the octree H' in the following
section.

8 VIEW-DEPENDENT REFINEMENT

We are now ready to describe the steps pertaining to the final phase
of our out-of-core view-dependent renderer; the run-time compo-
nent. We reiterate that the view-dependent refinement algorithm
presented here is in a sense minimalistic, and serves mostly as a
proof of concept for showing the correctness of our memory insen-
sitive simplification, that our data structures are appropriate, and
that our run-time framework and interface with the out-of-core data
are.efficient enough to achieve interactive frame rates. It is pos-
sible to improve the efficiency of our run-time system, for exam-
ple by incorporating support for various types of culling, includ-
ing view frustum, back-face, and occlusion culling. However, sich
techniques are beyond the scope of this paper,-and we see them
as fruitful avenues for future work. We here describe our run-time
framework, with the main focus on its out-of-core aspects.

Because the level-of-detail hierarchy stored on disk may exceed
the amount of available memory, we must be careful to page in
only the active nodes of the hierarchy. Rather than making use of
an explicit paging system, we rely on the use of read-only memory
mapping to associate the on-disk hierarchy with a logically con-
tiguous address space, and let the operating system fetch the data
from disk when it is first accessed. Similar strategies for out-of-
core rendering of large terrain have been employed, for example by
Hoppe [12] and by Lindstrom and Pascucci [17]. This approach
to data paging is particularly attractive when the refinement and
rendering tasks are decoupled and run asynchronously. Also, as
demonstrated in [17], by arranging the data and the accesses to it in
a cache coherent manner, it is possible to substantially improve the
paging performance. Indeed, our choice of arranging the octree in a
coarse-to-fine, breadth-first layout on disk was made intentionally,
after having been inspired by the quadtree layout in [17]. Given
this general framework, we now describe the two tasks of adaptive
refinement and rendering.

8.1 Refinement Algorithm

Similar to several other components of our algorithm, our adaptive
octree refinement closely follows the strategy employed by Luebke
and Erikson [19]. We begin by creating a single node for the root



of the dynamic octree H'. During refinement, we make use of two
complementary operations; node expansion and collapse. When
expanding a node we add its children; when collapsing a node we
remove its descendants. Pseudo-code for these steps is listed in
Table 5.

At the beginning of each frame, we recursively visit the nodes
in the octree, from top to bottom, and evaluate the refinement cri-
terion for each node by projecting its quadric error onto the screen.
(The details of this evaluation are given below.) If the error ex-
ceeds a user-specified threshold 7, then we continue the depth-first
traversal. If we reach a leaf node in H’ that needs to be refined,
then we expand this node and visit its children. If at any point the
projected error is smaller than the threshold, then we collapse the
node by discarding all of its descendants. In this manner, the octree
adapts as the viewpoint changes, and we visit only those nodes that
eventually make up the mesh.

"Finally, after the octree has been refined, we traverse it node by
node and render all the triangles encountered. For each triangle,
we follow the pointers to the proxy nodes, and send their vertex
positions and normals to the rendering subsystem.

8.2 Screen Space Metric

The decision whether to collapse or expand a node is governed by
a screen space error metric and a user-specified error threshold. In
our screen space metric, we make use of the quadric error € and po-
sition p of a node’s representative vertex, as well as the curvature
matrix K. Note that, due to our triangle-area-weighting of the ge-
ometric displacements (see Section 4), our quadric error has units
of volume squared, which needs to be expressed in units of length.
This can be done, for example, by normalizing the error by dividing
by the sum of squared areas for the cluster’s triangles (i.e. by the
sum of eigenvalues A1 + A2 + As). Another approach, and the one
used in our implementation, which ensures that the error of a node
is at least as large as its children’s, is to assume that the volumetric
errors correspond to some hypothetical volume, e.g. a sphere, in
which case we simply compute the radius of the sphere and use it
as the error term. In either case, these computations are done once
when the node is constructed, and the ¢ field in the dynamic node is
assumed to have units of length.

As a base metric, we set the screen space error to be proportional
to the ratio of the object space error and the distance from the view-
point to the node. As suggested in Section 6.1.3, to incorporate
directionality into our metric for silhouette preservation, we modu-
late the base metric by the factor 7. Thus, our screen space metric

. pcan be written as

vviKv

p=2M s = e (13)

-pll viv

where v = e—p is the vector from the node to the viewpoint e, and
A is the screen resolution in pixels per radians. We then compare
p against a threshold T to determine whether the node is active or
not. For efficiency reasons, we square and rearrange some terms,
and obtain the following expression:

aclive <> p> 7
= A2E(VTKvV) > i (vTv)? . (14)
= ez(vTKv) > rZ(vTv)?

where k = 1 is the screen space error threshold in radians.
Because the octree is pruned whenever a node is found to be
inactive, we should ideally ensure that a node’s projected error is
always larger than those of its children. Note that the quadric errors
by their additive nature already satisfy this nesting property. Sim-
ilarly, the amount of curvature encoded in the matrix K can only

increase when quadric matrices are combined. However, the direc-
tion and length of the vector v varies from node to node, making
it possible to violate the nesting condition. A general technique
for handling this view-dependent problem was presented in [17], in
which a nested sphere hierarchy is computed and used in place of
the positions of individual vertices. While not implemented here,
all the information needed for constructing this hierarchy is readily
available in our off-line simplification algorithm, and we believe
that it would be rather straightforward to incorporate this sphere
hierarchy into our screen space metric.

9 RESULTS

In this section we present experimental results of running our al-
gorithms. We used a number of polygonal test models, including a
massive 373 million triangle model of Michelangelo’s St. Matthew
statue [13]. All models, except the Buddha, were simplified on an
SGI Onyx2 with forty-eight 250 MHz R10000 CPUs and 15.5 GB
of main memory. The Buddha model was simplified and later ren-
dered on a Linux PC with two 800 MHz Pentium III processors,
512 MB of RAM, and a GeForce3 graphics card. As is evident
in the accompanying video, which shows an example of view-
dependent refinement of the Buddha model, we obtain a throughput
of roughly 800,000 rendered triangles per second. This video also
illustrates the directionality of our anisotropic error metric, by ani-
mating the cube-like object from Figure 1. When the large, nearly
flat faces of the cube are orthogonal to the view direction, they are
coarsened significantly, while silhouettes such as the edges of the
cube and faces close to tangent to the view direction are preserved.
Figure 2 shows additional qualitative results.

Disk and Memory Usage Table 6 lists numerical results for
our off-line method, including the number of triangles, grid size
(2™), timing results, effective triangle processing rate, and disk us-
age. Not included in this table is the maximum memory usage. Our
method uses only a constant O(1) amount of memory: 5 MB for the
Linux machine, and 8 MB for the SGI (the difference is due to dif-
ferent size executables). The temporary disk usage of our method
can be shown to be a constant multiple (roughly a factor of 5) of
the size of the input mesh. While the theoretical usage is linear in
both the size of the input and the output, the simplification phase
often reduces the mesh to the extent that the overall temporary disk
space is entirely dominated by the plane equation file (which is re-
moved before the hierarchy construction begins) and any disk space
used while sorting this file. As can be seen from the last column,
the size of the octree output file is on average only 25% larger (in
bytes per triangle) than the size of the input. For the sake of fair-
ness, our triangle soup input format is not as efficient as the more
common indexed mesh representation, which requires only half as
much storage. The indexed mesh, on the other hand, is impractical
for external memory algorithms since it requires random access.

Execution Time As can be seen from the table, for small oc-
trees the total time is dominated by the external sort phase of the
simplification. As the octree (and thus size of the output) grows
larger, the output phase of the octree construction begins to dom-
inate. Still, our memory insensitive algorithm is remarkably fast,
and yields an effective triangle processing rate (measured as the
size of the input over the total time) of roughly 20,000-50,000 tri-
angles per second (tps). As a point of reference, El-Sana and Chi-
ang [4] report a reduction rate of roughly 5,300 tps for their largest
model, consisting of 1.2 million triangles. This model is consider-
ably smaller than some of those simplified here, and it is not clear
to what extent their method scales—an extrapolation of their re-
sults suggests that the speed of their method would steadily decline
for increasing model size. The method proposed by Prince [21],
while producing high quality meshes, yields about 1,000 tps for



[y

] simp. time (%) hier. time (%) | total time disk usage (MB)
model Tin Tous " ead | sort | write | pull | push | (h:m:s) Tan/s input | temp. | output
62346 | 71193446 203} 03 15.5 21 | 51,345 180 2.6
Buddha 1,087,716 204,766 81175301 13.6 | 0.7 373 32 | 33,685 37 181 9.0
522,700 | 9 7.6 | 17.3 8.1 1.3 65.8 57 | 19,168 186 26.1
129214 | 7233488 214 | 0.0 6.5 13:02 | 36,109 4,823 5.1
Blade 28246208 | so7'lo4 | 8| 213|344 | 199 ] 01| 243 1a15|33025| 70| asi3| 211
St. Matthew | 372,963,401 | 3,012,996 | 10 | 24.0 | 43.0 | 23.2 | 0.0 10.5 3:56:30 | 26,284 | 12,805 | 64,011 | 125.6

Table 6: Numerical results for memory insensitive simplification and level-of-detail hierarchy construction. The timings are reported for the subphases read (lines 1-7), sort (line 8),
and write (lines 9-12) of the simplification phase (see Table 1), and pull (lines 1-4) and push (lines 5-19) of the hierarchy construction phase (see Table 2). The Buddha data set was

simplified on a Linux PC, while the other models were simplified on an SGI Onyx2.

the largest model used (11.4 million triangles). Meanwhile, his
method requires more than 512 MB of RAM to simplify this model,
whereas we use a constant 8 MB. The theoretical execution time of
our off-line processing is O(Tin + Tout), assuming the external sort
is implemented as a radix sort,> which suggests that our method
scales well.

10 SUMMARY AND FUTURE WORK

We have described a method for constructing a level-of-detail hier-
archy for large polygonal meshes. This method performs all com-
putations on disk, and uses only a small, constant amount of RAM.
The method requires temporary disk space linear in the size of the
input and output, and runs in linear time. Even though virtually no
RAM is used, our method executes one to two orders of magnitude
faster than previous methods, and achieves a peak simplification
rate of over 50,000 triangles per second. We have also presented
compact data structures and a suitable error metric for performing

out-of-core view-dependent refinement of the resulting mesh hier-

archy. Our results show that we obtain interactive frame rates and a
throughput of around 800,000 triangles per second using immediate
mode rendering.

The work described in this paper has focused on the off-line sim-
plification and hierarchy construction phases, while our run-time
view-dependent component is currently rather primitive (although
fairly general). We see considerable room for algorithmic improve-
ment to the run-time system, such as the use of multithreading to de-
couple refinement and rendering, time-critical, priority-driven mesh
updates (cf. [3]) to capitalize on frame-to-frame coherence, geo-
morphing to smooth out temporal popping artifacts, prefetching to
improve the paging system, and fast culling to remove geometry
that is either occluded or not within the view frustum. We believe
that the regularity and hierarchical nature of the octree structure is
particularly well suited for supporting fast culling. We also intend
to investigate how to extend our error metric to guarantee the nest-
ing condition in screen space, and how to account for the visual
impact of simplification on the shading of the surface.

Finally, we envision that our off-line algorithms can be further
enhanced. As noted in [18], the greatest potential for reducing the
disk usage lies in using a compressed, perhaps quantized represen-
tation for the rather large plane equation file, which by far domi-
nates the amount of temporary disk space used. We also see un-
tapped potential in increasing the speed of our out-of-core method
through parallelization. The locality of our data accesses and the
octree partitioning of space and work naturally lend themselves to
parallel execution.
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Figure 2: View-dependent renderings of the St. Matthew data set for various error thresholds.



